Automated Clustering of Virtual Machines based on Correlation of Resource Usage
نویسندگان
چکیده
The recent growth in demand for modern applications combined with the shift to the Cloud computing paradigm have led to the establishment of large-scale cloud data centers. The increasing size of these infrastructures represents a major challenge in terms of monitoring and management of the system resources. Available solutions typically consider every Virtual Machine (VM) as a black box each with independent characteristics, and face scalability issues by reducing the number of monitored resource samples, considering in most cases only average CPU usage sampled at a coarse time granularity. We claim that scalability issues can be addressed by leveraging the similarity between VMs in terms of resource usage patterns. In this paper we propose an automated methodology to cluster VMs depending on the usage of multiple resources, both systemand network-related, assuming no knowledge of the services executed on them. This is an innovative methodology that exploits the correlation between the resource usage to cluster together similar VMs. We evaluate the methodology through a case study with data coming from an enterprise datacenter, and we show that high performance may be achieved in automatic VMs clustering. Furthermore, we estimate the reduction in the amount of data collected, thus showing that our proposal may simplify the monitoring requirements and help administrators to take decisions on the resource management of cloud computing datacenters.
منابع مشابه
A Genetic Based Resource Management Algorithm Considering Energy Efficiency in Cloud Computing Systems
Cloud computing is a result of the continuing progress made in the areas of hardware, technologies related to the Internet, distributed computing and automated management. The Increasing demand has led to an increase in services resulting in the establishment of large-scale computing and data centers, in addition to high operating costs and huge amounts of electrical power consumption. Insuffic...
متن کاملA Data Mining approach for forecasting failure root causes: A case study in an Automated Teller Machine (ATM) manufacturing company
Based on the findings of Massachusetts Institute of Technology, organizations’ data double every five years. However, the rate of using data is 0.3. Nowadays, data mining tools have greatly facilitated the process of knowledge extraction from a welter of data. This paper presents a hybrid model using data gathered from an ATM manufacturing company. The steps of the research are based on CRISP-D...
متن کاملSecure Bio-Cryptographic Authentication System for Cardless Automated Teller Machines
Security is a vital issue in the usage of Automated Teller Machine (ATM) for cash, cashless and many off the counter banking transactions. Weaknesses in the use of ATM machine could not only lead to loss of customer’s data confidentiality and integrity but also breach in the verification of user’s authentication. Several challenges are associated with the use of ATM smart card such as: card clo...
متن کاملProfiling and Modeling Resource Usage of Virtualized Applications
Next Generation Data Centers (NGDC) are transforming labor-intensive, hard-coded systems into shared, virtualized, automated, and fully managed adaptive infrastructures. Virtualization technologies promise great opportunities for reducing energy and hardware costs through server consolidation. Moreover, virtualization can optimize resource sharing among applications hosted in different virtual ...
متن کاملPredicting Application Resource Requirements in Virtual Environments
© Predicting Application Resource Requirements in Virtual Environments Timothy Wood, Ludmila Cherkasova, Kivanc Ozonat, Prashant Shenoy HP Laboratories HPL-2008-122 virtualization, application resource usage, benchmarking, modeling, automation, performance models, regression-based approach Next Generation Data Centers (NGDC) are transforming labor-intensive, hard-coded, siloed systems into shar...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013